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Phase transition in globally coupled Ro¨ssler oscillators
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Kyushu University, Kasuga, Fukuoka 816-8580, Japan
~Received 30 November 1999!

We study a population of identical Ro¨ssler oscillators with global coupling. When the coupling constant is
increased, an order-disorder-type phase transition occurs. Partial phase synchronization occurs in the ordered
phase, although the amplitude of the oscillation is randomly distributed. We analyze the phase transition with
a self-consistent method.

PACS number~s!: 05.45.Xt, 64.60.Cn
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Coupled oscillator models have been intensively stud
as typical nonlinear-nonequilibrium systems@1–3#. Such
coupled oscillator models are used for the description
Josephson-junction arrays or biological rhythms. Collect
oscillatory motion appears in a population of oscillators w
different natural frequencies or in a population of identic
oscillators under external noises, when the mutual coup
is increased. A mean-field theory can be applied for the g
bally coupled oscillator systems. On the other hand, we h
found a phase transition in a coupled map lattice where e
dynamical element exhibits deterministic chaos@4,5#. We
will show a macroscopic transition like a phase transition
a large population of identical Ro¨ssler oscillators@6#.

The model equation is written as

dxi

dt
52yi2zi1

d

N (
j 51

N

~xj2xi !,

dyi

dt
5xi1ayi , ~1!

dzi

dt
5b1xizi2czi ,

wherea, b, andc are parameters of the Ro¨ssler equation,d
is the coupling constant, andN is the total number of oscil-
lators. For parameters such asa50.15,b50.2, andc510,
the power spectrum ofx(t) manifests itself in sharp peaks
the phase of each oscillator is well defined, and the ph
synchronization occurs easily. The phase synchronizatio
a phenomenon in which the amplitudes of chaotic oscillat
are not synchronized but the phases are synchronized@7–9#.
As a is increased forb50.2 andc510, the Ro¨ssler attractor
becomes a funnel-like attractor and the projection of the
tractor into thex-y plane does not have a hole region fora
.0.18. For parameters such asa50.195,b50.2, and c
510, the peaks of the power spectrum ofx(t) are broad, and
the oscillation is noisier. We will show numerical results f
parametersa50.195,b50.2, andc510. Figure 1 displays a
time sequence of the average ofxi ; i.e., ^x(t)&
5(1/N)( j 51

N xi(t) for N52000. The numerical simuatio
was performed with the Runge-Kutta method. Atd50.01,
the time sequencêx(t)& seems to be rather random and t
amplitude of the averaged motion is small. However,
PRE 611063-651X/2000/61~6!/7212~3!/$15.00
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averaged motion̂x(t)& exhibits a sinusoidal motion with a
definite amplitude and a frequency atd50.017. Each oscil-
lator exhibits more chaotic time evolution; however, the a
eraged motion is fairly regular.

Figure 2 displays a snapshot of@xi(t),yi(t)# for i
51,2, . . . ,N at d50.01 and 0.017. Atd50.01, ^x(t)&;0;
therefore, each oscillator’s motion is almost independent
the snapshot profile of (xi ,yi) is randomly distributed in the
whole region of the Ro¨ssler attractor. Atd50.017, the col-
lective motion appears and each oscillator tends to be s
chronized by the collective oscillation. This phenomenon
similar to the order-disorder phase transition in thermo
namic systems. A similar transition was also found by P
ovsky, Rosenblum, and Kurths@8#. They mainly discussed
mutual synchronization in a population of oscillators wi
different natural frequencies. We discuss the order-disor
transition in a population of identical oscillators with a se
consistent method.

We assume that the averaged motion can be approxim
by a sinusoidal wave. That is, 1/N( j 51

N xj (t)5^x(t)& is as-
sumed to beX01X1sin(vt), where X0 denotes a time-
averaged value of̂x(t)&, and X1 ,v denote the amplitude

FIG. 1. Time sequences of the averaged motion^x(t)&
5(1/N)( j 51

N xj (t) by Eq. ~1! for a50.195,b50.2,c510, andN
52000 at~a! d50.01 and~b! 0.017.
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and the frequency of the sinusoidal oscillation. Then the c
pling term d/N( j 51

N (xj2xi) in the model equation~1! is
reduced tod@X01X1sin(vt)2xi#. The equation for each os
cillator is equivalent to the forced Ro¨ssler equation:

dx

dt
52y2z1d$X01 f sin~vt !2x%,

dy

dt
5x1ay, ~2!

dz

dt
5b1xz2cz,

where the amplitude of the forcingf is equal toX1. We have
investigated Eq.~2! by changingf for certain fixed values of
X0 andv. The time sequence ofx(t) is chaotic; however, the
motion tends to be synchronized to the external perio
force. To measure the degree of the synchonization, we h
calculated the amplitude of the sinusoidal component w
frequencyv in the chaotic time sequencex(t) by

X5~2/T!E
T0

T01T

x~ t !sin~vt !dt.

The quantityX does not depend on an initial value ofx(t) or
T0 if T is sufficiently large. Figure 3 displays the relation
X and f for the parameters~a! d50.01,X050.123,v51.012
and ~b! d50.017,X050.143,v51.016. The time intervalT
540 000 is used. The parametersX0 andv are numerically
estimated values from the time sequence^x(t)& by the direct
numerical simulation of Eq.~1!. The amplitudeX1 of the
averaged motion in Eq.~1! is written as

FIG. 2. Snapshot profiles of (xi ,yj ) at ~a! d50.01 and~b!
0.017.
-

ic
ve
h

X15~2/T!E
T0

T01T

^x~ t !&sin~vt !dt

5~2/T!E
T0

T01T

~1/N!(
j 51

N

xj~ t !sin~vt !dt

52/~NT!(
j 51

N E
T0

T01T

xj~ t !sin~vt !dt.

Each oscillatorj obeys the same equation~2! independently
and the quantity (2/T)*T0

T01Txj (t)sin(vt)dt takes the same

valueX for everyj. The averaged valueX1 is therefore equal
to X for the forced Ro¨ssler equation~2!; that is, the ampli-
tude X1 of the averaged motion is equal to the tempo
averageX of the degree of the phase synchronization to
external periodic force.X1 is also equal tof. The condition
X5X15 f represents the self-consistent condition that
averaged motion̂x(t)&5X01X sin(vt) plays the role of the
external force to each oscillator. The intersection of theX
5X( f ) curve andX5 f gives a self-consistent solution. Th
intersection isX50 for d50.01. It implies that collective
motion cannot occur for the parameter. The self-consis
solutions areX50 and 5.21 ford50.017. The solutionX
50 may be unstable and the nontrivial solutionX55.21 is
realized, which implies the appearance of the collective
cillation. On the other hand, we have calculated the am
tude of the collective oscillation in the time evolution of E
~1! by

A5A~1/T!E
T0

T01T

@^x~ t !&2X0#2dt.

If the averaged motion is expressed as^x(t)&5X0

1X1sin(vt), A is equal toA5X1 /A25X/A2. Figure 4 dis-

FIG. 3. Fourier amplitudeX for the frequencyv as a function of
f in the forced Ro¨ssler equation~2! at ~a! d50.01 and~b! 0.017.
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plays the numerically obtained values ofA as a function of
the coupling constantd. The points marked by squares d
noteA by the direct numerical simulation of Eq.~1! and the
points marked by1 denoteA5X/A2 obtained by the self-
consistent method shown in Fig. 3. The values ofX0 andv
are assumed byX050.096812.63d andv51.00510.654d,
which are linear fittings ofX0 andv obtained from the av-
eraged motion̂ x(t)& in the time evolution by Eq.~1! for
severald. The self-consistent solution is a good approxim
tion.

We have used a certain value of the frequencyv of the
averaged motion to calculate Eq.~2!. The frequencyv
should also be obtained with a self-consistent method. If
frequencyv is changed in Eq.~2!, x(t) tends to be synchro
nized to the periodic force with the frequencyv. However,
there may be a phase shift between the external fo
f sin(vt) andx(t). To measure the phase shift, we have c
culated X5(2/T)*T0

T01Tx(t)sin(vt)dt and Y5(2/T)*T0

T01T

x(t)cos(vt)dt. The time-averaged phase shift is evaluated

a5arctan~Y/X!.

Figure 5 displays the relation ofa and v for d50.017,
X050.143, andf55.22, which are the values estimated fro

FIG. 4. Root-mean-square amplitudeA of the collective oscilla-
tion as a function of the coupling constant. The square marks de
the values from the direct numerical simulation of Eq.~1! and the
1 marks denote the values obtained by the self-consistent me
shown in Fig. 3.
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the direct numerical simulation of Eq.~1!. The phase shift
decreases asv is increased. This is becausex(t) tends to lag
behind the external force sin(vt), as the frequencyv is
faster. The averaged motion ofx(t) should be equal to the
external force by the self-consistent condition. It implies th
the phase shift should be zero. The phase shifta;0 for v
;1.0152. It is close to the numerical valuev;1.016 by the
direct simulation of Eq.~1! at d50.017.

To summarize, we have analyzed an order-disorder-t
phase transition in globally coupled Ro¨ssler oscillators with
a self-consistent method. In the disordered phase, each o
lator’s motion is nearly independent. Some phase synchr
zation occurs and collective oscillation appears in the
dered phase. The collective motion is assumed to be a sim
sinusoidal oscillation, and the amplitude and the freque
have been numerically obtained by a self-consistent met
from the chaotic motion of the forced Ro¨ssler equation. The
self-consistent method gives a good intuitive interpretat
for the appearance of the collective motion.

The averaged values of chaotic motion are generally
smooth functions of the parameters. For example, there
exist many window structures of periodic solutions in a
parameter ranges. However, roughly speaking, the dynam
transition in a globally coupled chaotic oscillator is inte
preted to be an analogue of the order-disorder-type ph
transition in thermodynamic systems.
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FIG. 5. Phase shifta between the time sequencex(t) by the
forced Rössler equation~2! and sin(vt) as a function ofv.
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